

SiliconToaster: A Cheap and Programmable EM Injector for Extracting Secrets

Karim Abdellatif and Olivier Hériveaux

Goals

- Building a home-made platform for injecting EM pulses
- Considering low cost components
- Platform validation

Agenda

- **A** short review of the state-of-the-art setups
- Presenting the design details of the SiliconToaster
- **❖** Application: Attacking the firmware protection of an IoT chip
- Conclusion

Previous Setups

Commercial Tools

ChipSHOUTER, \$3300 USD (NewAe)

Setups from Academia

Ordas et al. (FDTC 2015)

• Commercial pulse generator

Cui et al. (USENIX 2017)

Balasch et al. (DCIS 2017)

- Hand-made pulse generator with fixed voltage
- External power supply to feed the pulse generator

SiliconToaster

SiliconToaster

- Programmable high voltage generation up to 1.2KV
- High voltage switching circuit
- Probe fabrication

High Voltage Generator

Programmable Voltage

- The generated high voltage depends on several parameters such as:
 - Number of pulses
 - Frequency of the input pulses
 - Pulse width
- With 8ms of pulses and frequency of 10KHZ, the output voltage is 1.2kV

MCU-PWM

- The MCU changes the duty cycle of the input pulse to control the generated voltage
- PWM peripheral of STM32F2 [18] is used
- Another important feature is also using the analog-to-digital converter of the MCU.

High Voltage Switching circuit + Probe fabrication

 IGBT: maximum ratings are 1.2kV collector-emitter voltage, 40A pulsed current and 20V gate-to-emitter voltage

 Fabricated from a flat coil of 6.6 mm diameter with 9 turns

Final Model + GUI

Application

Platform Validation

- An IoT chip has three different configuration modes
 - A: No security feature is activated
 - B: Bootloader is enabled, but commands used to read and write memory are disabled
 - C: All the security features for protect IP protection are enabled
- The goal is to convert the configuration from C to A to dump the firmware

Setup

- The DUT was placed in a custom board socket
- SiliconToaster is used for injecting EM pulses to bypass the security configuration modes
- Scaffold board is also used to communicate with the DUT

C configuration Attack

Algorithm 1: Attack sequence of C configuration

while True do

Programmable EM Pulse

C Configuration Attack: 400V + Success= 60%

B configuration Attack


```
Algorithm 2: Attack sequence of B configuration

Initialize-SiliconToaster;
Read Memory Content (trigger=1, address, number of bytes);

if (uart.receive=ACCEPT) then

| Data=uart.receive(number of bytes);

else

| Data=None;
```

B configuration Attack: 400V + Success= 30%

Discussion

Design	EM voltage	Power supply	Visibility	Polarity
SiliconToaster	Programmable	USB-powered	GUI	Two SMA
USENIX 2017 + DCIS 2017	Fixed	External power supply	No	Another probe needed

Conclusion

Conclusion

- We presented how an efficient platform (SiliconToaster) can be built in order to inject EM pulses
- We detailed the used blocks in the platform
- Thanks to the flexibility of the SiliconToaster that allowed injecting EM pulses with a programmable voltage up to 1.2kV
- SiliconToaster was invested efficiently in breaking the firmware protection configurations of the targeted DUT

Questions?